Brewster Windows
Definition: transparent plates which are oriented at Brewster's angle
There are situations where an optical beam must be sent through some transparent window, whereas the optical losses occurring at this window must be very small. A typical example is a helium–neon laser with a sealed glass tube and external resonator mirrors as shown in Figure 1, where glass windows separate the laser gas mixture from ambient air. Given the small gain and the small output coupler transmission, the losses at these interfaces need to be far below 1% per pass. This is achieved by using Brewster windows, where the angle of incidence is close to Brewster's angle. In that situation, the reflectivity at the air–glass interfaces becomes very small for p-polarized light, i.e., when the polarization direction is in the plane of incidence.
An uncoated glass plate at normal incidence would normally have a reflectivity of several percent on each side. With an anti-reflection coating, this could be reduced to e.g. 0.2%. Brewster windows can have at least 10 times lower losses. In addition, any residual reflection will leave the resonator, rather than lead to interference effects (as can occur for windows with normal incidence). Of course, both Brewster windows in a setup as shown above must have exactly the same orientation.
Due to the significant loss difference between p and s polarization, the polarization of laser emission is usually forced to be in the p direction. In many lasers, this is the only effect determining the polarization direction.
ليست هناك تعليقات:
إرسال تعليق